Skip to main content

Autonomous Vehicles Shift into High Gear

Self-driving systems may have bugs but they are free from the myriad distractions and risk-taking behaviors that are the most common causes of crashes today

Credit:

World Economic Forum

Editor's Note: This article is part of a special report on the Top 10 Emerging Technologies of 2016 produced by the World Economic Forum. The list, compiled by the Forum’s Meta-Council on Emerging Technologies, highlights technological advances its members, including Scientific American Editor in Chief Mariette DiChristina, believe have the power to improve lives, transform industries and safeguard the planet. It also provides an opportunity to debate any human, societal, economic or environmental risks and concerns that the technologies may pose prior to widespread adoption.

The rise of the automobile transformed modern society. It changed where we live, what we buy, how we work, and who we call friends. As cars and trucks became commonplace, they created whole classes of jobs and made other professions obsolete.

We are now on the cusp of an equally transformative technological shift in transportation: from vehicles driven by humans to vehicles that drive themselves. The long-term impact of autonomous vehicles on society is hard to predict, but also hard to overstate. The only certainty is that wherever this technology becomes ubiquitous, life will be different than it was.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Google and other companies have been testing self-driving cars for several years now, with good success. These autos process vast amounts of sensory data from on-board radars, cameras, ultrasonic range-finders, GPS, and stored maps to navigate routes through ever more complex and rapidly changing traffic situations without any human involvement.

Consumer use of vehicles with autonomous capabilities, however, is just beginning.  Adoption will proceed gradually, through the steady implementation of increasingly intelligent safety and convenience features in otherwise ordinary cars. Some models, for example, already offer hands-off parallel parking, automatic lane-keeping, emergency braking, or even semi-autonomous cruise control. Last October, Tesla Motors made available a software package that enables a limited form of self-driving operation for owners of its vehicles to download.

This trend is likely to continue as such technology matures and as legal and regulatory barriers start to fall. Half a dozen states have already authorized autonomous road vehicles, and more have plans to do so. Discussions are well underway among auto insurers and legislators about how to apportion liability and costs when self-driving cars get into crashes, as they inevitably will—although it is widely expected that these cars will prove to be much safer, on average, than driver-operated cars are today.

There is plenty of room for improvement on that front. In the United States, crashes and collisions claim more than 30,000 lives and cause some 2.3 million injuries annually. Self-driving systems may have bugs—the software that runs them is complicated—but they are free from the myriad distractions and risk-taking behaviors that are the most common causes of crashes today. In the near term, semi-autonomous safety systems that engage only to prevent accidents, but that otherwise leave the driver in charge, will also likely reduce the human cost of driving significantly.

Far more profound transformations will follow once cars and trucks can be trusted to pilot themselves routinely—even with no one inside. Exclusive car ownership could then cease to be the necessity of modern living that it is today for so many people. Shared cars and driverless taxi and delivery services could become the norm. This transition might help the aged and infirm—an increasing fraction of the population—to “age in place” more gracefully. Shared programmable vehicles could reduce the need for local parking structures, reduce congestion by preventing accidents and enabling safe travel at higher speeds and closer following distances, and unlock numerous secondary benefits.

Like every technology, autonomous vehicles will involve drawbacks as well. In some distant day, commercial driving may no longer be a sustainable career. Shared vehicles raise some thorny privacy and security concerns. In some regions, increased affordability of car access may greatly exacerbate traffic and pollution problems rather than easing them. But the many benefits of self-driving cars and trucks are so compelling that their widespread adoption is a question of when, not if.